
The Phase-Shift Oscillator: 
 
The following figure shows the circuit diagram of the phase-shift oscillator. Oscillation occurs at 
the frequency where the total phase shift through the three RC feedback circuits is 180. The 
inversion of the op-amp itself provides the another 180 phase shift to meet the requirement for 
oscillation of  a 360 (or 0) phase shift around the feedback loop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The feedback circuit in the phase-shift oscillator is shown in the following figure. In the 
derivation we assume, 
 
R1 = R2 = R3 = R and C1 = C2 = C3 = C 
 
 
 
 
 
 
 
 
 
Using mesh analysis we have, 

i21 VRII)Cj/1R(    ... ... (1) 

0RII)Cj/1R2(RI 321   ... ... (2) 

32 I)Cj/1R2(RI    ... ... (3) 

 
In order to get V0, we must solve for I3 using determinants: 
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For oscillation in the phase-shift amplifier, the phase shift through the RC circuit must be equal to 
180. For this condition to exist, the j term must be 0 at the frequency of oscillation 0.  
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Now, from the equation (4) we have, 
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The negative sign results from the 180 inversion by the circuit. Thus, the value of voltage gain by 
the RC circuit is,  
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To meet the greater-than-unity loop gain requirement, the closed-loop voltage gain of the op-amp 
must be greater than 29.  
 
So, Rf  29 R3 

Jayanta
Note
for rc oscillator its -1/27

Jayanta
Note
for rc oscillator its (6)^.5/(2*pi*rc)



Exercise:  

 

 

 

 

 

 

 

 

 

 

 

 

 



The Colpitts Oscillator: 
 
The following figure shows the circuit diagram of the Colpitts oscillator. Oscillation occurs at the 
frequency where the L-C feedback circuits is at resonance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming R1>>XC1 we have the impedance of the L-C circuit, 
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At parallel resonance the impedance will be maximum and we can write, 

0XXX 1C2CL   

 2C1CL XXX   ... ... (1) 

 21 C/1C/1L   

 
21

21
21

CC

CC1
C/1C/1L




  

 
)CC/(CC

1

L

1

2121

2


  

 
)CC/(CLC

1

2121 
  

TLC

1
   where 

21

21
T

CC

CC
C


  


TLC2

1
f


  

 
Again, the voltage gain of the LC circuit, 
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Here negative sign is for 180 phase shift by the circuit. So magnitude of the voltage gain is, 

V1 C1 C2 

L 

V2 

L-C feedback circuit Z 

Rf 

+V 

-V 

Vo 

R1 

C1 C2 

L 

Colpitts oscillator 



1CL

1C

XX

X


  

2C

1C

X

X
   (from equation (1)) 

1

2

C

C
  

For oscillation to sustain, the loop gain must be greater than unity. Therefore, the voltage gain of 
the amplifier should be, 
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Design the Colpitts oscillator to produce a 40 kHz output frequency. Use a 100 mH inductor and 
an OP-AMP with a 10 V supply.  
 
SOLUTION  We know, 
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The OP-AMP full-power bandwidth (fp) must be a minimum of 40 kHz when 
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Example:  Design of OP-AMP Colpitts Oscillator 

Jayanta
Note
as Rf/R > C1/C2, C1/C2 is so chosen that the gain does'nt exceed the supply voltage +-10V



The Hartley Oscillator: 
 
The following figure shows the circuit diagram of the Hartley oscillator. Oscillation occurs at the 
frequency where the C-L feedback circuits is at resonance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming R1>>XL1 we have the impedance of the C-L circuit, 
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At parallel resonance the impedance will be maximum and we can write, 
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Again, the voltage gain of the C-L circuit, 
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Here negative sign is for 180 phase shift by the circuit. So magnitude of the voltage gain is, 
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For oscillation to sustain, the loop gain must be greater than unity. Therefore, the voltage gain of 
the amplifier should be, 
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If the inductors are wound on separate core, then mutual inductance M = 0 and we can write, 
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Design the Hartley oscillator to produce a 100 kHz output frequency with an amplitude of 8 V. 
For simplicity, assume that there is no mutual inductance between L1 and L2.  
 
SOLUTION  VCC = (V0 + 1 V) = (8 V + 1 V) = 9 V 
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Example:  Design of OP-AMP Hartley Oscillator 
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Wein Bridge Oscillator: 
 
The following figures show the circuit diagram of the Wein Bridge oscillator. Oscillation occurs 
at the particular frequency when ac balance is obtained in the Wein Bride. At the balanced 
condition of the bridge we can write, 
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Since, the right hand side of the above equation is a real term, the left hand side must also be a 
real term. So, we can write, 
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From equation (1) we have, 
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The op-amp along with the two resistors R3 and R4 constitutes a non-inverting amplifier who’s 
voltage gain is, 
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This corresponds that the attenuation of the feedback network is, 
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For R1 = R2 = R and C1 = C2 = C we have, 
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Design the Wein bridge oscillator  to produce a 100 kHz output frequency with an amplitude of 
9 V. Design the amplifier to have a closed-loop gain of 3.  
 
SOLUTION  VCC = (V0 + 1 V) = (9 V + 1 V) = 10 V 
 

For ACL = 3,  R1 = R2 = R and C1 = C2 = C 
Also,      R3 =2R4  

  Select,    C1 = 1000 pF (standard value) 
       C2 = C1 = 1000 pF 
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Example:  Design of Wein Bridge Oscillator 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.12 CRYSTAL OSCILLATORS 
 
If a piezoelectric crystal, usually quartz, has electrodes plated on opposite faces and if a potential 
is applied between these electrodes, forces will be exerted on the bound charges within the crystal. 
If this device is properly mounted, deformations take place within the crystal, and an 
electromechanical system is formed which will vibrate when properly excited. The resonant 
frequency and the Q depend upon the crystal dimensions, how the surfaces are oriented with 
respect to its axes, and how the device is mounted. Frequencies ranging from a few kilohertz to a 
few megahertz, and Q’s in the range from several thousand to several hundred thousand, are 
commercially available. These extraordinarily high values of Q and the fact that the 
characteristics of quartz are extremely stable with respect to time and temperature account for the 
exceptional frequency stability of oscillators incorporating crystals. Crystal oscillators are used 
whenever great stability is required, for example, in communication transmitters and receivers. 
 The electrical equivalent circuit of a crystal is indicated in Figure 9.25. The inductor L, 
capacitor C, and resistor R are the analogs of the mass, the compliance (the reciprocal of the 
spring constant), and the viscous-damping factor of the mechanical system. The typical values for 
a 90-kHz crystal are L = 137 H, C = 0.0235 pF, and R = 15 k, corresponding to Q = 5,500. The 

dimensions of such a crystal are 30 by 4 by 1.5 mm. Since /C represents the electrostatic 
capacitance between electrodes with the crystal as a dielectric, its magnitude (~3.5 pF) is very 
much larger than C. 

If we neglect the resistance R, the impedance of the crystal (Z in Figure 9.25(b)) is given by,  
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Figure 9.25 A piezoelectric crystal: (a) Symbol, (b) electrical model, and 
(c) the reactance function (if R = 0).  
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Therefore, reactance of the crystal is 
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The plot of Equation (9.66) is shown in Figure 9.25(c). Since /C >> C, .sp    For the crystal 

whose parameters are specified above, the parallel frequency is only three-tenths of 1 percent 

higher than the series frequency. For ,ps   the reactance is inductive, and outside this 

range it is capacitive, as indicated in Figure 9.25(c). In order to use the crystal properly it must be 
connected in a circuit so that its low impedance in the series resonant operating mode or high 
impedance in the parallel resonant operating mode is selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Series Resonant Circuits 
 
To excite a crystal for operation in the series resonant mode it may be connected as a series 
element in a feedback path. At the series resonant frequency of the crystal its impedance is 
smallest and the amount of (positive) feedback is largest. A typical transistor circuit is shown in 
Figure 9.26.  Resistors R1, R2, and RE provide a voltage divider stabilized dc bias circuit.
 Capacitor CE provides ac bypass of the emitter resistor and the RFC coil provides for dc 
bias while decoupling any ac signal on the power lines from affecting the output signal. The 
voltage feedback from collector to base is a maximum when the crystal (XTAL) impedance is 
minimum (in series resonant mode). The coupling capacitor CC has negligible impedance at the 
circuit operating frequency but blocks ant dc between collector and base. 
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Figure 9.26  
Crystal-controlled 
oscillator using crystal 
in series feedback path: 
(a) BJT circuit, and (b) 
FET circuit.  



 The resulting circuit frequency of oscillation is set by the series resonant frequency of the 
crystal. Changes in supply voltage, transistor device parameters, and so on, have no effect on the 
circuit operating frequency which is held stabilized by the crystal. The circuit frequency stability 
is set by the crystal frequency stability, which is good. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parallel Resonant Circuits 
 
Since the parallel resonant impedance of a crystal is a maximum value, it is connected in 
parallel/shunt. At the parallel resonant operating frequency a crystal appears as an inductive 
reactance of largest value. Figure 9.27(a) shows a crystal connected as the inductor connected in a 
modified Colpitts circuit. The basic dc bias circuit should be evident. Maximum voltage is 
developed across the crystal at its parallel resonant frequency. The voltage is coupled to the 
emitter by a capacitor voltage divider  capacitors C1 and C2. 
 A Miller crystal-controlled oscillator circuit is shown in Figure 9.27(b). A tuned LC 
circuit in the drain section is adjusted near the crystal parallel resonant frequency. The maximum 
gate-source signal occurs at the crystal parallel resonant frequency controlling the circuit 
operating frequency. 
 
OP-AMP Crystal Oscillator 
 
An OP-AMP can be used in a crystal oscillator as shown in Figure 9.28. The crystal is connected 
in the series resonant path and operates at the crystal series resonant frequency. The present 
circuit has a high gain so that an output square-wave signal results as shown in the figure. A pair 
of Zener diodes is shown at the output to provide output amplitude at exactly the Zener voltage 
(VZ).                                 
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Figure 9.27  
Crystal-controlled 
oscillators in parallel 
resonant operating 
mode: (a) BJT circuit, 
and (b) FET circuit.  
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Figure 9.28 Crystal oscillator using OP-AMP.  




